A first limnological description of Lake Kichiritith, Kenya: a possible reference site for the freshwater lakes of the Gregory Rift Valley

Håkan Tarras-Wahlberg*, David Harper* and Nils Tarras-Wahlberg

We provide a first limnological description of Lake Kichiritith, situated in the eastern Rift Valley of Kenya. Kichiritith is located in a swampy area between lakes Bogoria and Baringo; difficulties of access have meant that it is apparently undisturbed. In this, it is different from Lakes Baringo and Naivasha, other Rift valley lakes, and evidence of tectonic activity. Modified from Clarke et al.14 visited in 2001, when a first bird list for the area was established. Kichiritith is located in a swampy area and difficulties of access mean that its limnology has not been investigated. It still appears to be undisturbed and pristine. In this, it is different from lakes Baringo and Naivasha, which are the two most important freshwater lakes of the eastern Rift Valley. These two bodies of water are beset by severe problems, including the introduction of alien species (Naivasha), high suspended sediment load (Baringo), and declining fisheries (both). The contrast between lakes Baringo and Kichiritith is dramatic. The latter is mildly eutrophic, similar to Lake Naivasha, with a rich and varied planktonic flora and fauna. Lake Baringo is strongly eutrophic and turbid, with an impoverished planktonic ecosystem. We suggest that Lake Kichiritith may be used as a reference site, providing background conditions for assessing the original state of Lake Baringo and, by extension, of other freshwater bodies of the eastern Rift Valley. If protected, Lake Kichiritith can be a standard against which the restoration or continuing degradation of Baringo and Naivasha can be assessed.

Introduction

We describe here a small lake named Kichiritith, situated 8 km south of Lake Baringo in the eastern (Gregory) Rift Valley of Kenya, between it and the alkaline Lake Bogoria (Fig. 1). The lake is of recent origin, appearing on the floodplain of the River Molo after the El Niño rains of 1997. It was reconnaitered in early 2000 (D. Harper, pers obs.), and the lake’s shore was subsequently

*Swedish Geological AB, Box 19090, 104 32 Stockholm, Sweden.
*Department of Biology, University of Leicester, LE1 7RH, U.K.
*Bäckalund, Häljärde, 355 92 Väjås, Sweden.
*Author for correspondence. E-mail: hakkan.tarras-wahlberg@ihilab.se
Results and discussion

Water quality

The Rift Valley of Kenya has not experienced above-normal rain for the first two years of the 21st century. As a consequence, the three lakes have reached near-steady states under mean precipitation regimes, with little variation in water quality properties (Table 3). Highest pH and conductivity were shown in Baringo, which was also very turbid and with high phosphate levels, indicative of a severely eutrophic lake. The contrast with Lake Kichiritith was marked and limnological conditions there indicated only a mildly eutrophic lake. In the latter, the mean transparency in the open water was 26 cm, but in fringing lagoons, the lake bottom was clearly visible (indicating a transparency of more than 100 cm). This contrast in transparency between open water and lagoons represents conditions similar to those of Lake Naivasha a decade ago.

The concentrations of dissolved metals and metalloids were similar in both lakes measured. The levels are in line with worldwide background levels, below existing quality standards for the protection of aquatic fauna (cf. refs 10, 11).
Table 4. Chlorophyll a concentration (mean ± s.d.), and major plankton taxa of the three lakes.

<table>
<thead>
<tr>
<th>Lake</th>
<th>Chlorophyll a (mg m⁻³) (n)</th>
<th>Plankton community</th>
<th>Zooplankton</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baringo</td>
<td>74 ± 7 (78)</td>
<td>Microcystis sp. (dominant)</td>
<td>Keratella sp. (rare) Cladocera (rare) Copepoda (rare)</td>
</tr>
<tr>
<td>Kichiritith</td>
<td>71 ± 48 (2)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Key: dominant: >50% of all individuals; abundant: 10–50%; common: 5–10%; rare: <5%.

Plankton

Algal chlorophyll a levels indicated similar biomass in all lakes (Table 4). The chlorophyll concentrations in Lake Baringo were as high as in the two other lakes, which is surprising, considering that Baringo was strongly turbid. Even in Kichiritith, the orthophosphate levels were well in excess of algal demand, suggesting that light is limiting algal abundance in all three systems. In Naivasha and Kichiritith, the light limitation may be due to self-shading by algal cells, whereas in Baringo the high sediment-driven turbidity further limited light transparency and allowed only buoyant colonies of Microcystis species to thrive. In contrast, phytoplankton species indicated a greater similarity between Kichiritith and Naivasha.

Baringo also supported limited zooplankton species, probably because of the restricted food, as both cyanobacteria and inorganic suspended solids offer little that is palatable. The contrast between the small lake and neighbouring Baringo confirmed that the latter’s ecosystem is experiencing considerable stress.

The lagoons of Kichiritith supported a dense mat of aquatic plants, dominated by the blue water lily, *Nymphaea nouchali* var. caerulea, and floating *Pistia stratiotes* with submersed macrophytes underneath. Such vegetation is rare in Lake Baringo, partly because of its highly turbid water and partly because of its higher conductivity. Lake Oloiden, adjacent to Lake Naivasha and contiguous with it twenty years ago, has progressively become more saline; it now has a conductivity double that of Baringo and no submerged macrophytes. At the time its conductivity was similar to Baringo’s today, it had an underwater flora limited to *Potamogeton pectinatus* (D. Harper, pers. obs.). Lake Naivasha formerly had an extensive aquatic plant community dominated on the water surface by *N. nouchali* var. caerulea and underwater by *P. schweinfurthii* and *Najas horrida*; since the late 1970s the entire community has been sporadic in its appearance, largely due to the grazing effect of the exotic omnivorous Louisiana crayfish, *Procambarus clarkii*.

Conclusions

The contrast between the closely adjacent lakes Baringo and Kichiritith is very marked. The smaller has the characteristics of a mildly eutrophic lake, similar to that of Lake Naivasha. Lake Baringo, in contrast, is now a strongly eutrophic and turbid body of water with an impoverished planktonic flora and fauna, indicating an ecosystem which is experiencing severe environmental stress. The preliminary data reported here suggest that Lake Kichiritith may be used as a reference site, providing background conditions for assessing the original state of Lake Baringo and possibly, by extrapolation, of other freshwater bodies of the eastern Rift Valley. However, the data collected from Lake Kichiritith are relatively limited and further work is needed to document and understand the lake. Preliminary observations suggest that ecosystem parameters that need to be studied include the small lake’s fish population, and its apparent rich bird life. Considering the dramatic, and often unwanted, changes that have occurred in other freshwater lakes of the Rift Valley, the future protection of Lake Kichiritith assumes considerable importance, and it may serve as a standard against which restoration or continuing degradation of Baringo can be assessed.